Dynamical friction for accelerated motion in a gaseous medium
نویسنده
چکیده
ABSTRACT Dynamical friction arises from the interaction of a perturber and the gravitational wake it excites in the ambient medium. This interaction is usually derived assuming that the perturber has a constant velocity. In realistic situations, motion is accelerated as for instance by dynamical friction itself. Here, we study the effect of acceleration on the dynamical friction force. We characterize the density enhancement associated with a constantly accelerating perturber with rectilinear motion in an infinite homogeneous gaseous medium and show that dynamical friction is not a local force and that its amplitude may depend on the perturber’s initial velocity. The force on an accelerating perturber is maximal between Mach 1 and Mach 2, where it is smaller than the corresponding uniform motion friction. In the limit where the perturber’s size is much smaller than the distance needed to change the Mach number by unity through acceleration, a subsonic perturber feels a force similar to uniform motion friction only if its past history does not include supersonic episodes. Once an accelerating perturber reaches large supersonic speeds, accelerated motion friction is marginally stronger than uniform motion friction. The force on a decelerating supersonic perturber is weaker than uniform motion friction as the velocity decreases to a few times the sound speed. Dynamical friction on a decelerating subsonic perturber with an initial Mach number larger than 2 is much larger than uniform motion friction and tends to a finite value as the velocity vanishes in contrast to uniform motion friction.
منابع مشابه
Dynamical Friction in a Gaseous Medium
Using time-dependent linear perturbation theory, we evaluate the dynamical friction force on a massive perturber Mp traveling at velocity V through a uniform gaseous medium of density ρ0 and sound speed cs. This drag force acts in the direction −V̂ , and arises from the gravitational attraction between the perturber and its wake in the ambient medium. For supersonic motion (M ≡ V/cs > 1), the en...
متن کاملRelativistic dynamical friction in a collisional fluid
The dynamical friction force experienced by a body moving at relativistic speed in a gaseous medium is examined. This force, which arises due to the gravitational interaction of the body with its own gravitationally-induced wake, is calculated for straight-line and circular motion, generalizing previous results by several authors. Possible applications to the study of extreme mass-ratio inspira...
متن کاملDynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium
We investigate the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semianalytic method. This work is a straightforward extension of Ostriker (1999) who studied the case of a straight-line trajectory. The circular orbit causes the bending of the wake in the background medium along the orbit, forming a long trailing ...
متن کاملVISCOUS NUTATION DAMPER, MODELING AND ANALYSIS
In some aerospace vehicles, the tracking sensors which act in a tracking loop as stabilizer are mounted on a two degree of freedom gyro. The gyro must align its rotor axis with the line of sight in order to remove tracking errors. The tracking precision and sensitivity are functions of the gyros performance. One of the main factors in reducing the precision and producing instabilities is nutati...
متن کاملNonlinear Dynamical Friction in a Gaseous Medium
Using high-resolution, two-dimensional hydrodynamic simulations, we investigate nonlinear gravitational responses of gas to, and the resulting drag force on, a very massive perturber Mp moving at velocity Vp through a uniform gaseous medium of adiabatic sound speed a∞. We model the perturber as a Plummer potential with softening radius rs, and run various models with differing A = GMp/(a 2 ∞rs)...
متن کامل